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This work continues the development of methods for optimum spatial compensator
design of adaptive structures and is based upon the use of a computationally e$cient
estimate of the Hankel singular values of the open-loop controllability and observability
Gramians to form the design metric. Results demonstrate that when a range of transducer
sizes is considered in the candidate set, the proper spatial compensator design metric is the
product of a coupling cost and a de-coupling cost. This leads to designs that provide
a balance between coupling to modes that are important for control and de-coupling from
modes not important for control. As demonstrated on a simply supported plate structure,
the optimum design resulting from the application of the approach detailed herein
signi"cantly limits coupling to all modes except those present in the performance metric. The
method provides the ability to crudely loop-shape the adaptive structure, as demonstrated
through modi"cation of both the actuator-to-sensor frequency response function and the
system loop gain. It is concluded that emphasis should be placed on designing spatial
compensators in order to facilitate the design of controllers for adaptive structures.

( 2001 Academic Press
1. INTRODUCTION

Adaptive structures have demonstrated the potential to outperform conventional structures
in a number of di!erent areas [1]. The most common example is the suppression of
low-frequency vibration and sound, where active control techniques are known to surpass
traditional passive methods [2, 3] and the application and use of adaptive structures is just
beginning. This paper investigates techniques to design adaptive structures for increased
performance and robustness.

In an adaptive structure, the control system modi"es the dynamic response of the
structure to external disturbances and/or varying environmental conditions. The process of
designing a control system to meet desired objectives is known as compensation and current
approaches to optimum compensator design usually involve frequency shaping the system
open- and closed-loop transfer functions. Traditionally, compensator design techniques
have been based solely upon optimization of the controller to meet the most important
design objectives. The controller can also be called the temporal compensator of the system;
recognizing that the action of the controller is to modify the temporal response of the sensor
signals to form the proper control inputs signals.

Work in adaptive structures has shown that optimum compensator design may be
augmented by considering the design of the spatial compensator [1] of the system. Spatial
compensation is de"ned as the in#uence of the type, shape, size, and placement of the
0022-460X/01/430489#20 $35.00/0 ( 2001 Academic Press
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transducers on the open-loop response and, as a result, the closed-loop temporal
compensator design. Further, the control system of the adaptive structure is a combination
of both the temporal and spatial compensator designs.

The optimization of actuator and sensor placement has been previously demonstrated as
important to control with adaptive structures [1, 4, 5]. Optimum transducer placement
yields greater performance with less control e!ort and hardware [6]. Recently, Clark and
Cox [7] and Smith and Clark [8] have presented techniques to also increase system
robustness by optimizing transducer placement. Increased system robustness is de"ned in
reference [7] as reduced coupling to out-of-bandwidth modes, where model "delity
frequently su!ers. Smith and Clark [8] reduced coupling to both the out-of-bandwidth
modes and the in-bandwidth modes pre-selected by the control system designer as not
important for control. The design approach leads to reduced model and controller order.
Similar approaches to optimum actuator and sensor placement for increased system
performance were "rst presented by Lim [9]. The design techniques discussed in references
[7}9] are computationally e$cient and allow rapid optimization of the spatial compensator
design of an adaptive structure. These design approaches are based upon open-loop
estimates of the controllability and observability Gramians of the system.

The objective of this work is to continue the development of techniques for optimum
spatial compensator design. The design metric introduced in section 2 is an advancement of
the open-loop approaches developed in references [7}9]. This design metric is formed as the
product of a coupling cost and a de-coupling cost. Analysis is presented which demonstrates
the necessity of this approach when one considers transducers of varying size. The design
metric is then applied to vibration control of a simply supported plate with one piezoelectric
sensor and one piezoelectric actuator. A SISO pair is chosen since the optimum design
should re#ect the minimum number of inputs and outputs required to meet the adaptive
structure objectives. The properties of the analytical plate are given in section 3. Results of
this approach are presented in section 4. The results demonstrate that the design metric
leads to a crude method of loop-shaping adaptive structures by optimum spatial
compensator design. The conclusions of this work are given in section 5.

2. THEORY

Discussion of optimum spatial compensator design for adaptive structures begins with
a description of the test structure. In this case, an analytical model of a simply supported
plate is developed; the simplicity of a plate structure allows one to focus on the in#uence of
the design technique versus characteristics of the structural dynamics. The open-loop design
metric is then presented and based upon an estimate of the Hankel singular values (HSVs)
to provide a measure of both performance and robustness. Finally, the H

2
control design

process is discussed, as used to design the optimum temporal compensator, i.e., controller,
for the adaptive structure.

2.1. PLATE MODEL

The simply supported plate structure is modelled using the assumed-modes method [1].
It is assumed that the plate transverse displacement, r (x, y, t), can be represented by a "nite
series of the in vacuo eigenfunctions of the form
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where N
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is the number of structural modes in the model, (n
x
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) is the indice pair for
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x
is the plate width,¸

y
is the plate height, and q

n
(t) is the generalized displacement.

Substituting equation (1) into the partial di!erential equation for the plate leads to a set of
ordinary di!erential equations of the form
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where M
n
is the modal mass, u

n
is the natural frequency, wd

n
(t) is the generalized disturbance

force, ¸
xy

de"nes the di!erential operator associated with the actuator, and b (x, y) de"nes
the spatial aperture over which the transducer is applied. As such, the di!erential action of
the actuator, and its dimension and position relative to the structure, clearly in#uences the
resulting generalized force applied through the modal participation coe$cient, b

n
.

Similarly, an expression for the sensor output, y(t), can be developed as a function of the
response in generalized coordinates as detailed by Clark et al. [1]. Speci"cally
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S
xy

de"nes the di!erential operator associated with the sensor, and p (x, y) de"nes the
aperture over which the sensor is applied. As with the expression for the actuator, the
di!erential operation and aperture of the sensor play a critical role in the contribution of
each structural mode to the output as demonstrated by the modal participation coe$cient,
c
n
. This path-dependent response from actuator to sensor resulting from the spatial "ltering

allows for loop-shaping by transducer selection/design.
A proportional damping term is also included in the model to bound the plate response

on resonance by adding the term 2f
s
u

n
qR
n
(t) to the left-hand side of equation (2). For this

work, the localized mass and sti!ness of the distributed piezoelectric transducers are
assumed negligible during optimum spatial compensator design, but are included, using the
approaches presented by Hagood et al. [10], for controller design and results analysis.

A diagram of the plate structure is shown in Figure 1. Two distributed transducers are
applied to the plate for control: an actuator is applied at placement (x

a
, y

a
) and a sensor is

applied at placement (x
s
, y

s
). The transducer sizes and placements shown in Figure 1 are

arbitrary; the optimum transducer sizes and placements are to be selected with the design
metrics discussed below. The physical dimensions and material properties of the plate are
given in section 3.

For this work, it is assumed that the plate structure is driven by a generalized disturbance,
wd
n
(t), such that each plate mode is excited at the same input level with uncorrelated random

noise, weighted by its modal mass. Each modal disturbance signal is assumed to be
uncorrelated and have a unity power spectrum, i.e. S

wd
n
wd
n

(u)"1. This form of plate
excitation omits the spatial "ltering e!ects of a speci"c disturbance transducer type, size, or
placement. Thus, the resulting design and performance results are more applicable to
a general variety of disturbance scenarios. For all examples provided in this manuscript, this



Figure 1. Diagram of simply supported plate (arbitrary transducers size and placement).
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general form of disturbance will be applied, both for open-loop transducer selection and for
closed-loop design of compensators.

2.2. DESIGN METRIC

The metric for optimum spatial compensator design presented here is developed from the
work of Smith and Clark [8], Clark and Cox [7], Lim [9], Lim and Gawronski [11], and
Gawronski and Lim [12]. These works detail a design technique that determines optimum
transducer size and placement by maximizing a metric formed of approximate Hankel
singular values of the open-loop controllability and observability Gramians [13]. The
design metric presented here provides a balance between the selection of individual modes
for coupling and de-coupling, and is necessary when one considers a range of transducer
sizes.

The spatial width and length (size) of a distributed transducer have a signi"cant in#uence
on the magnitude of the coupling with the structure. This coupling gain level can vary by
many orders-of-magnitude over a relatively small range of transducer sizes, and in#uences
how the optimum spatial compensator design metric must be formulated. Previous work by
Clark and Cox [7] considered a "xed transducer size, and thus the optimum results were
not a!ected by variation in coupling gain level.

The "rst step in developing any compensator design metric is to cast the control problem
into proper form. Figure 2 shows a block diagram of the two-port or two-input, two-output
(TITO) closed-loop system. The system ¹ (s) is composed of the generalized plant, P (s), with
controller, K (s). The transfer matrix P (s) in Figure 2 represents the dynamics of the simply
supported plate and transducer coupling. In addition, when P(s) is used to formulate the
spatial and temporal compensator design problems, it also includes the appropriate
weighting functions as desired for sensor noise inputs and/or performance outputs [1].



Figure 2. Block diagram of generalized plant with feedback controller.
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Four transfer matrices can be identi"ed through the standard generalized plant format.
The upper-left transfer matrix, P

zw
, represents the path from the input disturbance signals to

the desired performance. The lower-right transfer matrix, P
yu
, is the path from the input

actuator signal to the measured sensor output, and is determined by the selection of
transducer type, size, and placement as shown in equations (3) and (5). The cross-transfer
matrices P

zu
and P

yw
show that the control transducers also a!ect system performance and

that the disturbance signals a!ect the measured outputs respectively. As shown in references
[7, 8], and further demonstrated in this work, one can in#uence the coupling to selected
modes and crudely loop-shape the adaptive structure.

The optimum transducer properties are determined by maximizing a metric formed from
the proper transfer matrices. For lightly damped structures, the value of each HSV of
a transfer matrix is associated with a state of the system, and the size of each provides
a relative measure of the contribution that the state makes to the input}output response.

For the development, cast the structural model from the actuator input, u (t), to the
measured output of the sensor, y(t), in modal form such that
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Williams [13] demonstrated that the square of the ith HSV of a lightly damped structure
can be approximated by
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where c2
i

is the approximation of the ith HSV. As indicated in equation (12), the ithe HSV is
proportional to the time constant (q

i
"1/(f

i
u

i
)) of the ith structural mode and the modal

participation coe$cients for each actuator and sensor. The numerator of equation (12) thus
provides a measure of the degree of coupling between the actuator inputs and measured
outputs relative to the structural modes. Physically, the HSV is a measure of the amount of
energy that can be stored in the system from the inputs and the amount of energy that can
be retrieved by the outputs [14]. Thus, the HSV can be used to measure the e!ectiveness of
a particular actuator/sensor pair for coupling or not coupling to structural modes.

For the generalized plant given in Figure 2, the vector of HSVs of the open-loop system
from the input actuator signal, u, to the sensor output, y, is written as

C2
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A design metric based entirely upon evaluating equation (13) was "rst presented in
references [11, 12]. In this case, each HSV was computed for a predetermined set of
candidate transducer placements and the optimum placement is that which provided the
greatest value. The conclusion of this work was that selecting transducer placements with
the largest degree of coupling increases control system e$ciency and, thus, overall
performance.

Lim [9] recognized that the purpose of the control problem de"ned in Figure 2 is to
reduce/control the system performance, z(s), and to serve that purpose, equation (13) was
weighted by a measure of the system performance to provide for spatial compensator
designs that are e$cient at coupling to the modes with the greatest e!ect on z(s). This
technique also allowed one to consider the in#uence of disturbance path on system
performance. Lim [9] de"ned a measured of the degree of coupling of each mode associated
with the performance disturbance path, P

zw
:
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An optimum spatial compensator design metric was then written as a function of the
squares of the approximate HSVs:
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where J
qp

is the metric for the qth candidate sensor and the pth candidate actuator. The
value c4

yun
is the square of the nth HSV of the system, where all possible actuators and

sensors are considered; it is used to normalize the HSV calculations. As shown in reference
[9], equation (15) is a computationally e$cient means of determining transducer designs
that increase system performance.

Based upon equation (15), Clark and Cox [7] developed a design metric which also
provided for system robustness. This metric emphasized coupling to models within the
bandwidth of control, but de-emphasized coupling to modes outside the performance
bandwidth. As detailed in reference [1], feedback control problems are susceptible to
stability issues due to poor model "delity beyond the bandwidth of performance,
and previous approaches to limit the participation of out-of-bandwidth modes included
low-pass "lter hardware and loop-shaping of the temporal compensator to provide
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roll-o! at some predetermined frequency. Model "delity limitations are typically imposed
by computational speed and memory size of the digital signal processor hardware. Through
transducer optimization, Clark and Cox [7] limited the de-stabilizing e!ects of out-of-
bandwidth modes naturally, thus increasing system robustness to unmodelled dynamics.

Clark and Cox [7] distinguished between the number of in-bandwidth modes, n
in
, and

the number of out-of-bandwidth modes, n
out

"N
m
!n

in
, by forming the design metric as
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The cost for the in-bandwidth modes, JM in
qp

, was de"ned as equation (15) over the "rst n
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modes and normalized with respect to its maximum entry. The cost for the out-of-
bandwidth modes was de"ned to emphasize poor coupling to those modes and is written as
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The term JM out
qp

in equation (16) is de"ned as equation (17) divided by its maximum entry over
the entire candidate set.

As shown by Clark and Cox [7], equation (16) resulted in an optimum spatial
compensator design that e$ciently coupled to modes at low frequencies and rolled o!
naturally at high frequencies. This method provided a simple type of loop-shaping
by spatial design and increased the robustness of the adaptive structure by balancing
in-bandwidth coupling to structural modes important for performance against the inherent
out-of-bandwidth roll-o! provided by the chosen transducer pair.

Smith and Clark [8] continued the advancement of spatial compensator design
techniques by extending the design metric presented. Beyond considering in-bandwidth and
out-of-bandwidth modes, Smith and Clark [8] presented a method to select modes for
control and to de-emphasize modes, both in-bandwidth and out-of-bandwidth, not
considered important by the control system designer. Limiting actuator-to-sensor coupling
to only selected modes lowers the order of the modelled system, thus leading to lower order
controllers. By de"nition, if a system does not observe/control modes, then they do not have
to be modelled for temporal compensator design [15].

The coupling cost for the design metric of Smith and Clark [8] was written over all
modes as
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where K is a binary, selection vector of length N
m
. Modes to be controlled have an element

value of 1 in K. The de-coupling cost over all modes was written as
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where the & operator is the one1s compliment or binary NOT. The design metric for mode
selection, presented in reference [8], was written as

JI
qp
,JM c

qp
#aJM nc

qp
. (20)

Again, the single overbar indicates that the individual metrics have been normalized by
their maximum value before summation. The weighting a provides for a design tradeo!
where a*0. A large value of a is selected for designs that de-emphasize coupling to the
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modes not important for performance, and a small value of a is selected to emphasize
coupling to the modes to be controlled. A typical choice for a is unity, but the parameter can
be adjusted by the control system designer to modify the relative weighting.

The design metrics given by equations (16) and (20) normalize the individual cost terms
associated with in-bandwidth coupling ad out-of-bandwidth roll-o! before summation.
However, as will be demonstrated by example in section 4.1, the application of the design
metrics is limited to problems whereby the dimensions of the actuators and sensors are "xed
(i.e., where placement is the only design variable). This limitation results because the signal
gain of a given type of transducer diminishes as the size of that transducer diminishes,
approaching zero in the limit. As such, the portion of the performance metric aimed at
minimizing coupling to modes beyond the bandwidth of control naturally decreases as the
transducer dimension gets smaller. This &&feature'' serves to emphasize the selection of
transducers with &&small'' dimensions to minimize coupling to structural modes at high
frequency. In contrast, if the application of the design metrics presented in equations (16)
and (20) is limited to cases whereby placement is the only design issue (i.e., "xed transducer
size), then a reduction in modal coupling is a direct result of wavenumber "ltering as
opposed to signal gain based upon transducer size. As such, the design metrics given by
equations (16) and (20) are only practical when the dimensions of the actuators and sensors
are "xed, but the positions of the transducers on the structure are allowed to vary.

To provide for a balance between coupling and de-coupling when the candidate set has
varying transducer sizes and thus coupling gain levels, the two cost terms should be
multiplied and then normalized, which is the speci"c focus of this paper. The design metric
is written as

JII
qp
,(Jc

qp
Jnc
qp

) . (21)

Transducers with a small coupling gain level will produce a large value for Jnc
qp

(see equation
(19)). However, they will also produce a small value for Jc

qp
and, when the two costs are

multiplied, a small metric results. Transducers with large coupling gain levels will produce
a large Jc

qp
, but a small Jnc

qp
cost. Large values of equation (21) are only given when both Jc

qp
and Jnc

qp
are large in value. This results when both the transducer size and placement are

optimum for the desired modal selection. Section 4.1 also gives a direct comparison of
optimum spatial compensator designs using equations (20) and (21).

2.3. H
2

CONTROL

The H
2

controller design process involves the minimization of the H
2

norm of
closed-loop transfer matrix, ¹

zw
, by the speci"cation of a proper K(s). The H

2
controller

design problem is solved here using the state-space solutions presented in reference [16].
This process involves solving two Riccatti equations by Schur decomposition and realizes
a full dynamic compensator, K (s), that is unique and of dimension equal to that of P (s) [15].
The solution is also stable, proper and, hence, realizable.

Since the dimension of the compensator, K(s), is equal to that of the plant model, P(s),
used in the design, reducing the order of adaptive structure model by de-emphasizing
coupling to all modes considered unimportant for performance leads to a lower-order
compensator. The actuator and sensor serve as wavenumber "lters and if they can be
designed concurrently to limit coupling to only those modes present in the performance
path, then the order of the resulting compensator is also constrained to the order of that
minimal dynamic representation.
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3. PHYSICAL SYSTEM

The geometry of the physical system is shown in Figure 1. The plate physical dimensions
and material properties are provided in Table 1. The thickness and properties of the
distributed piezoelectric transducers are provided in Table 2. The values given in Tables
1 and 2 are assumed "xed. The mass and sti!ness e!ects of the distributed piezoelectric
transducers are minimized by specifying a patch thickness that is signi"cantly less than the
plate thickness. They are only included in the model when designing the H

2
controllers and

analyzing the closed-loop results.
The open-loop design metric presented in equation (21) is used here to optimize the size

and placement of distributed piezoelectric transducers for a plate structure. The design
approach outlined provides a computationally e$cient method of selecting the best
actuator}sensor pair for the desired spatial "ltering from a predetermined set of candidate
actuators and sensors. For this work, a set of 15232 possible actuator}sensor con"gurations
of varying size and placement is considered. To form the candidate set, the x- and
y-dimensions of the distributed transducers are varied from 0)0508m (2 in.) to 0)1524m
(6 in.), in steps of 0)0254m (1 in.). The placement of each candidate transducer is then varied
across the plate, from edge to edge, in steps of 0)1]¸

x
and 0)1]¸

y
. This produce 3027

potential transducer sizes and placements, of which 1523 lie completely within the plate
boundaries and are kept as the candidate set. In this development, all patches are assumed
aligned with the coordinates of the plate.

A pair of 0)0508 m (2 in.) square transducers, colocated, with center placement at (0)2742,
0)0894)m, is selected as an initial, or non-optimal, case. This transducer size and placement
was utilized in previous studies on control of plate structures with distributed transducers
[17], and will be compared with the optimum design results.
TABLE 2

Properties of distributed piezoelectric transducers

Property Value

Material G-1195 PZT
Thickness, ¸p

z
0)0002 m

Density, o
p

7650 kg/m3
Young's modulus in E

11
, E

p
4)9]1010 N/m2

Poisson's ratio, l
p

0)30
Strain coe$cient, d

31
!166]10~12m/V

TABLE 1

Properties of plate structure

Property Value

Material Aluminum
Width, ¸

x
0)4572 m

Height, ¸
y

0)4064m
Thickness, ¸

z
0)0048m

Density, o
s

2700 kg/m3
Young's modulus, E

s
7)1]1010 N/m2

Poisson's ratio, l
s

0)33
Damping ratio, f

s
0)02



498 G. C. SMITH AND R. L. CLARK
The analytical plate model is calculated over the "rst 75 plate modes (N
m
"75) and is

thus accurate to approximately 5 kHz. However, the bandwidth of interest for the control
results is selected between 10 and 2000 Hz, which includes 19 structural modes (i.e., 38
states). For the open-loop actuator and sensor design/selection problem, the disturbance
input vector, w (s) (illustrated in Figure 2), is composed of process noise, represented by
w
d
(s). The vector is of dimensions N

m
]1 and represents uncorrelated random noise applied

to each structural mode (i.e., w (s)"w
d
(s)). For the closed-loop design of the dynamic

compensator, an additional input, w
s
(s), is added to the disturbance input vector, w (s), to

represent sensor noise such that w(s)"[wT
d
(s) w

s
(s)]T. The modal velocities of the structural

modes targeted for control, with modal indices of (1,1), (3,1), (1,3), and (3,3) for the example
provided, are used to de"ne the performance vector, z (s), for all open-loop actuator/sensor
designs and for the closed-loop design examples. The actuator and sensor inputs and
outputs, respectively, are represented by u (s) and y(s) and correspond physically to
piezoelectric transducer pairs from the original candidate sets.

4. RESULTS AND DISCUSSION

The adaptive structure design problem for this work is to reduce, with a single sensor and
actuator transducer pair, the vibration response of the (1,1), (1,3), (3,1) and (3,3) modes of
a simply supported plate. These four modes are the plate's most e$cient acoustic radiators
[1, 2]. To add robustness with respect to unmodelled dynamics and limit controller order, it
is also desirable to minimize coupling to the other plate modes.

The "rst ten damped natural frequencies of the plate are given in Table 3, where the
selection vector for this design problem is shown in the last column. The four modes which
are chosen as important for control have a K value of 1. Other modes within the design
bandwidth have a K value of 0, indicating that they are not important for control and the
spatial compensation resulting from the optimum transducer pair should, ideally, not
couple to them. To also ensure high-frequency roll-o!, all modes above (3,3) have a selection
value of 0, i.e., K

112N
m

"0.
The optimum transducer size and placement that meets the design goals of maximizing

coupling to the four most e$cient plate radiators and minimizing coupling to all other
modes is not immediately obvious to the control system designer. Thus, the design methods
presented in section 2.2. must be utilized.
TABLE 3

Plate modes, damped natural frequencies and selection vector

Mode number, n Mode index, (n
x
, n

y
) u

d
(Hz) K

n

1 (1,1) 127 1
2 (2,1) 295 0
3 (1,2) 340 0
4 (2,2) 510 0
5 (3,1) 577 1
6 (1,3) 697 1
7 (3,2) 789 0
8 (2,3) 864 0
9 (4,1) 969 0

10 (3,3) 1144 1
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Before presenting the optimum spatial compensator design results for this problem,
a comparison of the design metrics of equations (20) and (21) is given in section 4.1. The
bene"ts of a product metric over a summed metric are demonstrated by means of a reduced
candidate set example. The optimum transducer size and placement determined from the
full candidate set are then presented in section 4.2.1. The coupling between the actuator
input and sensor output for both the initial and optimum designs is compared. These results
demonstrate that the optimum design balances the design goals of coupling to the selected
modes and minimizing coupling to all other modes. The motivation for this work is to
demonstrate that spatial compensator design in#uences the controller design and the
resulting adaptive structure performance and robustness to unmodelled dynamics. The
controller design approach for this work is presented in section 4.2.2. To ensure proper
comparison of closed-loop results for di!erent transducer pairs, the control e!ort weighting
and sensor noise gains were adjusted such that the controller utilized the same level of signal
energy for both the initial and optimum spatial compensator designs. The loop gain and
closed-loop performance of each design are then presented in sections 4.2.3 and 4.2.4
respectively. These results are discussed in terms of the control objectives of performance
and selected coupling.

4.1. COMPARISON OF DESIGN METRICS

The design metrics of equations (20) and (21) are compared and discussed in this section.
A reduced candidate set is considered to allow for plotting of the design metrics and is
formed by assuming a dimension site size of 0)0508m (2 in.), instead of 0)0254 m (1 in.), and
a placement step size of 0)25¸

x
and 0)25¸

y
, instead of 0)1. This gives a candidate set of 28

potential transducer sizes and placements over the plate, including the initial design. The
exact size and placement of the initial transducer is given in the "rst row of Table 4.

Bar-charts of the design metrics for the reduced candidate set are given in Figure 3. Due
to space limitations, the x- and y-axis labels are only shown on the upper left "gure. The "rst
set of results, Figure 3(a), shows the coupling cost JM c

qp
(equation (18)) normalized by its

maximum value. As expected, larger transducers give a higher cost value, due to increased
TABLE 4

Sensor and actuator size and placement for each design

Transducer Center, (x, y) m Width, Dx m Height, Dy m

Initial
Actuator (0)2743, 0)0894) 0)0508 0)0508
Sensor (0)2743, 0)0894) 0)0508 0)0508

Optimum (JI
qp

), equation (20) with reduced candidate set
Actuator (0)2286, 0)2032) 0)1524 0)1524
Sensor (0)2286, 0)2032) 0)1524 0)1524

Optimum (JII
qp

), equation (21) with reduced candidate set
Actuator (0)2286, 0)1016) 0)1524 0)1524
Sensor (0)1143, 0)2032) 0)1524 0)1524

Optimum (JII
qp

), equation (21)
Actuator (0)0914, 0)0813) 0)1016 0)1016
Sensor (0)2286, 0)2032) 0)1270 0)1270



Figure 3. Bar-chart of design cost and metrics for each transducer combination in the reduced candidate set:
(a) coupling cost JM c

qp
(equation (18)); (b) de-coupling cost JM nc

qp
(equation (19)); (c) coupling cost JI

qp
(equation (20));

(d) coupling cost JI
qp

(equation (21)).
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coupling to the larger spatial waves of the (1,1), (1,3), (3,1) and (3,3) modes de"ning the
performance metric. The maximum value in this case is given by the largest patch pair (6 in.),
colocated at the center of the plate; this is the optimum positioning for coupling to odd
structural modes.

Figure 3(b) shows a bar-chart of the de-coupling cost JM nc
qp

, equation (19) normalized by its
maximum value. Here the smaller transducers give the higher cost because they have the
lowest coupling gain level. The e!ect of the decrease in coupling gain level with smaller
transducers is greater than the spatial "ltering e!ect of the larger aperture transducers
(further discussion on this point is given below). Also, note that the results in Figure 3(b)
show the reciprocity of the linear plate structure; the cost for actuator 6 and sensor 1 has the
same value as for sensor 6 and actuator 1.

The design metric of Smith and Clark [8], equation (20), is given in Figure 3(c) for a"1.
The costs of Figure 3(a) and 3(b) sum together to form a chart with three maximum peaks.
The peak at actuator 24 and sensor 24 is chosen by the numerical routine as optimum; the
transducer size and placement of this design is given in the second row of Table 4. Adjusting
the value of a for this case would force the choice of one optimum over the other. No
balance between coupling and de-coupling results from the application of equation (20)
when transducer sizes are allowed to vary.

Figure 3(d) is a bar-chart of the design metric formed by multiplying unnormalized
versions of Figure 3(a) and 3(b), equation (21). A cluster of transducer combinations give
maximum value. Due to reciprocity and plate symmetry, the peaks all correspond to the
same spatial compensator; each of the small clusters is a result of the same actuator and
sensor placements in di!erent quadrants of the plate. The optimum design is selected from



Figure 4. Sensor and actuator size and placement (normalized dimensions) for initial and optimum (with
reduced candidate set) designs and magnitude of the frequency response of the actuator-to-sensor transfer
functions: ......., initial actuator/sensor; -----, optimal actuator/sensor based upon JI

qp
(equation (20);**, optimal

actuator/sensor based upon JI
qp

(equation (21)).
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this set and given in the third row of Table 4. This result corresponds to a spatial
compensator design that was not previously apparent in the individual costs (see Figure 3(a)
and 3(b)) and, as shown below, represents a design that more appropriately balances both
modal coupling and de-coupling.

Figure 4 gives the sensor and actuator size and placement for the three design cases:
initial, optimum based upon equation (20) (JI

qp
), and optimum based upon

equation (21) (JII
qp

). Results for the optimum based upon equation (21) (JII
qp

) are an actuator
and sensor pair placed on mid-lines of the plate, with a slight overlap.

The magnitude of the frequency response of the transfer function P
yu

is also shown in
Figure 4. These curves represent the actuator-to-sensor coupling for each design. The input
signal to each actuator is the prescribed voltage and the sensed output is the piezoelectric
charge, which is proportional to structural strain. Vertical lines have been drawn in
Figure 4 at the frequencies of the desired modes to control; each line is labeled with the
corresponding modal index. The shaded portion of Figure 4 represents the frequency area
outside the design bandwidth.

The actuator-to-sensor frequency response function for the initial design is immediately
recognizable in Figure 4. Due to the colocated positioning and small size, the frequency
response is characterized by an alternating set of poles and zeros, and has a relatively small
coupling gain level that is roughly constant in magnitude. The optimum based upon
equation (20) (JI

qp
) is also colocated, and has a transducer frequency response characterized

by an alternating set of poles and zeros. However, the gain level for this case is much higher
due to the center placement and larger aperature. The coupling gain also begins to decrease
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at high frequency due to spatial "ltering e!ects of the larger transducer size. These results
are consistent with the work of Vipperman and Clark [17], which showed that colocated
transducers with large aperatures provided greater control of low-bandwidth modes and
serve as spatial wavenumber "lters of higher modes. This is also an &&intuitive'' spatial design
from observing nodal lines.

The actuator-to-sensor frequency response for the optimum based upon equation (21)
(JII

qp
) shows slightly less coupling to the desired modes than the optimum based upon

equation (20) (JI
qp

), but also shows less coupling to the modes de-emphasized for control.
This solution represents a balance between the design goals and demonstrates the
usefulness of the metric given by equation (21), demonstrating the ability to design spatial
compensators that shape the system frequency response through the control path.

4.2. OPTIMUM DESIGN RESULTS

Given that the advantages of applying the performance metric of equation (21) were
demonstrated in section 4.1, it is now applied to the full candidate set (15232 transducers)
and the optimum spatial compensator design results are obtained. The actuator-to-sensor
coupling, loop gain, and closed-loop performance of the optimum design and the initial
design are compared and discussed in this section. To ensure that the comparison of
the closed-loop design and results is appropriate, the sensor noise gain is set relative to the
frequency response between the applied process noise and the measured output, and the
broadband control signal energy level of each design is normalized by adjusting the control
e!ort weighting during H

2
controller synthesis [18].

4.2.1. Optimum spatial compensator

The sensor and actuator size and placement, from the full candidate set, that maximize
the value of JI I

qp
are given in the bottom row of Table 4 and plotted in Figure 5. The

optimum design for this case is a large sensor positioned on the center of the plate and
a slightly smaller actuator positioned in the lower left-hand corner. Unlike the previous
results given by the reduced candidate set, the optimum design does not utilize the largest
possible transducer. As also shown in Figure 5, the magnitude of the frequency response
from the actuator to sensor for this optimum design only couples well to the four targeted
modes. There is considerably less coupling to the non-targeted modes than in the previous
results (compare with Figure 4).

As discussed in section 2.2, the optimum spatial compensator design metric decreases the
sensitivity of the modelled adaptive structure to out-of-bandwidth modes by choosing
a transducer size and placement that frequency-shapes the P

yu
transfer function

appropriately. The optimum design shows both high-frequency roll-o! and de-coupling
from modes not considered important for control, i.e., excluded from the selection vector, K.

Figures 4 and 5 show the in#uence that the open-loop design metric has on the
actuator-to-sensor frequency response function of the adaptive structure. Through the
cross-transfer matrices, P

zu
and P

yw
, spatial compensator design also a!ects the controller

design and thus system loop gain and performance. Results and analysis of this in#uence are
presented after a discussion of the controller design process.

4.2.2. H
2

Controller design

Before discussing how the spatial compensator design in#uences the system loop gain
and performance, it is important to detail how theH

2
controller was developed. Controllers



Figure 5. Sensor and actuator size and placement for initial and optimum designs (normalized dimensions) and
magnitude of the frequency response of the actuator-to-sensor transfer functions: ......., initial actuator/sensor;**,
optimal actuator/sensor based upon JI

qp
(equation (21)).

OPTIMUM COMPENSATOR DESIGN 503
are designed from models of the adaptive structures, whether analytical or experimental. In
experimental work, system identi"cation techniques are used to obtain accurate models
over the performance bandwidth. To accurately capture this process, the H

2
controllers in

this work are designed with a model of the plate structure that only includes 19 plate modes
(i.e., 38 states). This represents a system model that captures plate dynamics up to 2000 Hz
and omits the inclusion of modes at higher bandwidth. Therefore, the non-shaded portion
in Figures 4 and 5 represents both the limit of the performance bandwidth and the limit of
the model bandwidth for controller design. It should be noted here that through careful
selection of the actuator and sensor path, it may be possible to signi"cantly reduce the order
of the model from 38 states to approximately 8 states, if coupling is su$ciently limited to the
(1,1), (3,1), (1,3), and (3,3) modes.

The H
2

controller design process assumes a level of random measurement noise on each
sensor signal and a unity process noise applied to each structural mode. The sensor noise
signal is an uncorrelated zero-mean Gaussian process with a shaped spectral density.
A comparison of the sensor output due to unit norm noise and unit norm disturbance
signals applied to each structural mode is given in Figure 6 for the both the initial and
optimum spatial compensator designs (i.e., for the two alternative transducer pairs
considered in the design). The reduced system model (19-mode model) is being utilized
during this portion of the controller design process.

For both designs, the sensor noise curve is created by a transfer function with three poles
at 0)01Hz and three zeros at 200 Hz. The sensor noise curve has high gain at low frequency
to reduce control spillover below the "rst structural mode. The sensor noise gain for each



Figure 6. Sensor noise for each design case (reduced plate model): (a) magnitude of frequency response for initial
actuator/sensor; (b) magnitude of frequency response for optimal actuator/sensor JII

qp
(equation (21))**, Process

noise EP
yw

d

(ju) D; ------, sensor noise EP
yw

s

( ju) D.

TABLE 5

Sensor noise gain, control e+ort weighting, resulting control power for each design

Design case <
s

R
c

E¹
uw

E
2

(</N)

Initial 2)3]10~3 4)0]10~4 149)198
Optimum 7)5]10~3 4)301]10~4 149)193
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design case illustrated in Figure 6(a) and 6(b), respectively, is selected such that the
contribution of the sensor noise is greater than the contribution of the process noise at the
measured output of the system for frequencies beyond the design bandwidth. The gain
associated with the sensor noise for both spatial compensator designs is given in Table 5 as
<
s
. The value of <

s
is greater for the transducer pair resulting from the optimal, open-loop,

design because the output response of the sensor is greater for the same level of applied
process noise. A signi"cant e!ort was made to ensure that the sensor noise curves for each
design were applied consistently for the H

2
controller designs. Obviously, there is a level of

subjectivity here because di!erent sensors are being used in each case. However, the
objective is to design a compensator that minimizes the response of the (1,1), (3,1), (1,3), and
(3,3) structural modes and also minimizes coupling to all other modes, particularly those at
high frequency in interest of reducing the sensitivity of the system to unmodelled dynamics
beyond the bandwidth of interest.

To further ensure proper comparison of results, the control e!ort weighting for the
optimum spatial compensator design was adjusted such that the controllers resulting from
each design case utilized the same amount of control signal energy as the initial case.
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Control signal energy is de"ned as the H
2

norm of the disturbance-to-control signal
closed-loop transfer matrix, ¹

uw
, over the modal bandwidth. The control e!ort weighting,

designated by R
c
, and the control signal energy levels for both designs are provided in

Table 5.

4.2.3. Comparison of loop gain

One approach to optimum compensator design is to frequency-shape the loop gain of the
adaptive structure [1, 15]. Loop gain is de"ned as the magnitude of the open-loop transfer
matrix P

yu
,K, where the input is the control input and the output is that of the compensator.

It is desirable to have a high loop gain at low frequency, where the disturbance dominates
the structural response and the plant is well modelled. The loop gain should also be small at
high frequency to reduce the e!ect of noise and avoid stability issues. At high frequencies,
the noise signals can dominate the sensor response and, as discussed previously, the plant
dynamics are, at best, poorly modelled. The exact cross-over point between high and low
frequency for this work is directly after the (3,3) mode or 1144Hz. As such, the selection
vector was chosen such that K"0 for all modes above this point.

Figure 7 shows the magnitude and phase of the loop gain as a function of frequency for
both the initial transducer pair and the optimal transducer pair. The high-frequency results
show that both designs provide loop gain magnitudes that decrease with frequency.
However, as desired, the loop gain associated with the optimal transducer pair set falls
much more sharply with frequency outside the model bandwidth. Thus, the loop gain has
been shaped for desired characteristics simply by use of the optimum spatial compensator
design (transducer sizes and placements). In fact, the order of the compensator can be
signi"cantly reduced for this case. As illustrated in Figure 7, the loop gain associated with
the optimal transducer pair is dominated by four structure modes, corresponding to eight
states of the model. As such, the resulting compensator focuses most of the control energy
Figure 7. Loop gain for () ) ) ) )) initial and (**) optimum designs (equal controller energy and similar sensor
noise curves).
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on those four structural modes. Model reduction can thus be applied with little degradation
in closed-loop performance. This is a signi"cant advantage for experimental systems as it
provides a means of implementing a low-order compensator which would not otherwise be
possible if the transducer pair were not designed to minimize coupling to modes not present
in the chosen performance metric. Low-order compensators, from a practical perspective,
are much easier to implement in current hardware.

4.2.4. Comparison of Performance

The vibration control performance corresponding to the H
2

norm of the modal velocities
associated with the (1,1), (3,1), (1,3), and (3,3) modes for a unit norm disturbance input is
provided as a function of frequency for each design in Figure 8. The open-loop performance
of the system (EP

zw
d

( ju)E
2
) is provided as a reference against which the closed-loop

performance (E¹
zw

d

(ju)E
2
) can be evaluated where E ' E2 is the H

2
norm of the system at

each frequency. For the open-loop case, the transducers are attached (i.e., incorporating the
local mass and sti!ness e!ects with initial size and placement) but not activated. The two
lower curves show the closed-loop vibration performance, E¹

zw
d

( ju)E
2
, when each control

system has been activated. The results presented in Figure 8 are shown for a frequency
resolution of 1 Hz. The units of performance are structural velocity per unit of input force.

The active insertion loss (AIL) in one-third-octave bands of each design is also given in
Figure 8. Active insertion loss is de"ned as the reduction of performance by the activation of
the control system [19]. It is characterized as AI¸,20 log

20
(EP

zw
d

E
2
/E¹

zw
d

E
2
). In this

case, the term E¹
zw

d

E
2

is the H
2

norm of the closed-loop disturbance-to-performance
transfer matrix over one-third octave frequency bands and EP

zw
d

E
2

is the H
2

norm of the
open-loop performance transfer matrix over the same bands. The units of AIL are decibels
and positive values correspond to a reduction in vibration response associated with the
modes included in the performance metric. The AIL ordinate is shown on the right-hand
side of the "gure and the one-third octave band center frequencies of selected bands are
shown directly below the bands.
Figure 8. Vibration control performance and active insertion loss for each design case (equal controller energy
and similar sensor noise curves): **, open loop; ------, initial actuator/sensor; **, optimal actuator/sensor.



TABLE 6

AI¸, in selected one-third octave bands, for initial and optimum design

AIL (dB)

One-third-octave band

Design case 125Hz 500Hz 630Hz 1250Hz

Intitial 2)1 !0)3 1)4 0)4
Optimum 6)9 1)9 5)1 2)9
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The results given in Figure 8 show that the closed-loop performance resulting from
the application of the initial transducer pair has a very limited e!ect on the plate response of
the (3,1) and (3,3) modes. The closed-loop performance resulting from application of the
optimal transducer pair is capable of controlling these modes and is much more e!ective at
controlling at (1,1) and (1,3) modes, as expected, for the same level of control signal energy.
AIL results for the one-third octave bands that include a selected mode are detailed in
Table 4. These results show that the optimum design provides much greater control of the
plate vibration for the targeted modes. Control of all the selected modes is more than tripled
between the initial and optimum spatial compensator designs, while both controllers are
using the same amount of control signal energy. By altering the size and placement of the
transducers used for control, the performance of the adaptive structure has been greatly
increased.

5. CONCLUSIONS

The development of a computationally e$cient and proper manner to pose the optimal
design of actuators and sensors to provide loop-shaping through adaptive structure design
is the primary contribution of this paper. Since the Hankel singular values of a lightly
damped structure can be estimated in a computationally e$cient manner, the optimal
actuator and sensor for producing a desired loop shape can be determined by minimizing
a cost function that emphasizes the coupling to modes important for performance and
penalizes coupling to all other modes within and beyond the bandwidth of interest.

To demonstrate the design concept, an example was provided. A single piezoelectric
actuator and sensor were designed for a plate with pinned boundary conditions.
A performance metric was chosen to limit coupling to the (1,1), (3,1), (1,3), and (3,3) modes of
the structure. The frequency response of the resulting actuator}sensor pair limited coupling
almost exclusively to the modes targeted in the performance metric. In the design of
adaptive structures, if spatial compensation (i.e, loop-shaping) can be incorporated into the
design, low-order models of the structure can be used for control system implementation. If
the path-dependent frequency response of the structure is dominated by modes that must be
controlled to achieve the desired level of closed-loop performance, then the model resulting
from system identi"cation on the physical structure will contain fewer states and will thus
lead to low-order dynamic compensators, whether they be adaptive or "xed gain. Based
upon these observations, it is concluded that emphasis should be placed on designing
spatial compensators in order to facilitate the design of controllers for adaptive structures.
Through proper design and planning, the implementation of a controller can be greatly
simpli"ed, which in the authors' opinion is a critical feature of an adaptive structure.
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